100 research outputs found

    \u3cem\u3eSecuring Employer-based Pensions: An International Perspective.\u3c/em\u3e Zvi Bodie, Olivia S. Mitchell and John A. Turner.

    Get PDF
    Zvi Bodie, Olivia S. Mitchell and John A. Turner. Securing Employer- based Pensions: An International Perspective. Philadelphia, University of Pennsylvania Press, 1996. $44.95 hardcover

    On the Nonlinear Shaping Gain with Probabilistic Shaping and Carrier Phase Recovery

    Get PDF
    The performance of different probabilistic amplitude shaping (PAS)techniques in the nonlinear regime is investigated, highlighting its dependence on the PAS block length and the interaction with carrier phase recovery (CPR). Different PAS implementations are considered, based on different distribution matching (DM) techniques—namely, sphere shaping, shell mapping with different number of shells, and constant composition DM—and amplitude-to-symbol maps. When CPR is not included, PAS with optimal block length provides a nonlinear shaping gain with respect to a linearly optimized PAS (with infinite block length); among the considered DM techniques, the largest gain is obtained with sphere shaping. On the other hand, the nonlinear shaping gain becomes smaller, or completely vanishes, when CPR is included, meaning that in this case all the considered implementations achieve a similar performance for a sufficiently long block length. Similar results are obtained in different link configurations (1Ă—1801\times 180 km, 15Ă—8015\times 80 km, and 27Ă—8027\times 80 km single-mode-fiber links), and also including laser phase noise, except when in-line dispersion compensation is used. Furthermore, we define a new metric, the nonlinear phase noise (NPN) metric, which is based on the frequency resolved logarithmic perturbation models and explains the interaction of CPR and PAS. We show that the NPN metric is highly correlated with the performance of the system. Our results suggest that, in general, the optimization of PAS in the nonlinear regime should always account for the presence of a CPR algorithm. In this case, the reduction of the rate loss (obtained by using sphere shaping and increasing the DM block length) turns out to be more important than the mitigation of the nonlinear phase noise (obtained by using constant-energy DMs and reducing the block length), the latter being already granted by the CPR algorithm

    Information-Theoretic Tools for Optical Communications Engineers [Invited]

    Get PDF
    Fundamental information-theoretic concepts are explained for nonspecialists, with emphasis on their practical usAge. The notions of a \u27FEC threshold\u27 and a \u27nonlinear Shannon limit\u27 are critically reviewed, highlighting their limitations and possible alternatives

    Phase noise mitigation in photonics-based radio frequency multiplication

    Get PDF
    Two photonics-based radio frequency multiplication schemes for the generation of high-frequency carriers with low phase noise are proposed and experimentally demonstrated. With respect to conventional frequency multiplication schemes, the first scheme induces a selective cancelation of phase noise at periodic frequency-offset values, whereas the second scheme provides a uniform 3-dB mitigation of phase noise. The two schemes are experimentally demonstrated for the generation of a 110-GHz carrier by sixfold multiplication of an 18.3-GHz carrier. In both cases, the experimental results confirm the phase noise reduction predicted by theory

    Sub-Nyquist Field Trial Using Time Frequency Packed DP-QPSK Super-Channel Within Fixed ITU-T Grid

    Full text link
    Sub-Nyquist time frequency packing technique was demonstrated for the first time in a super channel field trial transmission over long-haul distances. The technique allows a limited spectral occupancy even with low order modulation formats. The transmission was successfully performed on a deployed Australian link between Sydney and Melbourne which included 995 km of uncompensated SMF with coexistent traffic. 40 and 100 Gb/s co-propagating channels were transmitted together with the super-channel in a 50 GHz ITU-T grid without additional penalty. The super-channel consisted of eight sub-channels with low-level modulation format, i.e. DP-QPSK, guaranteeing better OSNR robustness and reduced complexity with respect to higher order formats. At the receiver side, coherent detection was used together with iterative maximum-a-posteriori (MAP) detection and decoding. A 975 Gb/s DP-QPSK super-channel was successfully transmitted between Sydney and Melbourne within four 50GHz WSS channels (200 GHz). A maximum potential SE of 5.58 bit/s/Hz was achieved with an OSNR=15.8 dB, comparable to the OSNR of the installed 100 Gb/s channels. The system reliability was proven through long term measurements. In addition, by closing the link in a loop back configuration, a potential SE*d product of 9254 bit/s/Hz*km was achieved

    Roadmap of optical communications

    Get PDF
    © 2016 IOP Publishing Ltd. Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications

    Genome sequences of three SARS-CoV-2 P.1 strains identified from patients returning from Brazil to Italy

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. We report the complete sequences of three SARS-CoV-2 P.1 strains obtained from nasopharyngeal swab specimens from three patients returning from Brazil to Italy

    Polarization-multiplexed nonlinear inverse synthesis with standard and reduced-complexity NFT processing

    Get PDF
    In this work, we study the performance of polarization division multiplexing nonlinear inverse synthesis transmission schemes for fiber-optic communications, expected to have reduced nonlinearity impact. Our technique exploits the integrability of the Manakov equation—the master model for dual-polarization signal propagation in a single mode fiber—and employs nonlinear Fourier transform (NFT) based signal processing. First, we generalize some algorithms for the NFT computation to the two- and multicomponent case. Then, we demonstrate that modulating information on both polarizations doubles the channel information rate with a negligible performance degradation. Moreover, we introduce a novel dual-polarization transmission scheme with reduced complexity which separately processes each polarization component and can also provide a performance improvement in some practical scenarios

    An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis

    Get PDF
    Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary information). Revised after critical reviews. Accepted for Publication in PLoS ON
    • …
    corecore